Pruriceptive spinothalamic tract neurons: physiological properties and projection targets in the primate.
نویسندگان
چکیده
Itch of peripheral origin requires information transfer from the spinal cord to the brain for perception. Here, primate spinothalamic tract (STT) neurons from lumbar spinal cord were functionally characterized by in vivo electrophysiology to determine the role of these cells in the transmission of pruriceptive information. One hundred eleven STT neurons were identified by antidromic stimulation and then recorded while histamine and cowhage (a nonhistaminergic pruritogen) were sequentially applied to the cutaneous receptive field of each cell. Twenty percent of STT neurons responded to histamine, 13% responded to cowhage, and 2% responded to both. All pruriceptive STT neurons were mechanically sensitive and additionally responded to heat, intradermal capsaicin, or both. STT neurons located in the superficial dorsal horn responded with greater discharge and longer duration to pruritogens than STT neurons located in the deep dorsal horn. Pruriceptive STT neurons discharged in a bursting pattern in response to the activating pruritogen and to capsaicin. Microantidromic mapping was used to determine the zone of termination for pruriceptive STT axons within the thalamus. Axons from histamine-responsive and cowhage-responsive STT neurons terminated in several thalamic nuclei including the ventral posterior lateral, ventral posterior inferior, and posterior nuclei. Axons from cowhage-responsive neurons were additionally found to terminate in the suprageniculate and medial geniculate nuclei. Histamine-responsive STT neurons were sensitized to gentle stroking of the receptive field after the response to histamine, suggesting a spinal mechanism for alloknesis. The results show that pruriceptive information is encoded by polymodal STT neurons in histaminergic or nonhistaminergic pathways and transmitted to the ventrobasal complex and posterior thalamus in primates.
منابع مشابه
Pruriceptive spinothalamic tract neurons: Physiological properties
21 22 Itch of peripheral origin requires information transfer from the spinal cord to the brain for 23 perception. Here, primate spinothalamic tract (STT) neurons from lumbar spinal cord were 24 functionally characterized using in vivo electrophysiology to determine the role of these cells in 25 the transmission of pruriceptive information. 111 STT neurons were identified by antidromic 26 stimu...
متن کاملTermination zones of functionally characterized spinothalamic tract neurons within the primate posterior thalamus.
The primate posterior thalamus has been proposed to contribute to pain sensation, but its precise role is unclear. This is in part because spinothalamic tract (STT) neurons that project to the posterior thalamus have received little attention. In this study, antidromic mapping was used to identify individual STT neurons with axons that projected specifically to the posterior thalamus in Macaca ...
متن کاملA quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord
The major ascending outputs from superficial spinal dorsal horn consist of projection neurons in lamina I, together with neurons in laminae III-IV that express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Some neurons in each of these populations belong to the spinothalamic tract, which conveys nociceptive information via the thalamus to cortical areas...
متن کاملLayer V neurons in mouse cortex projecting to different targets have distinct physiological properties.
Layer V pyramidal neurons are anatomically and physiologically heterogeneous and project to multiple intracortical and subcortical targets. However, because most physiological studies of layer V pyramidal neurons have been carried out on unidentified cells, we know little about how anatomical and physiological properties relate to subcortical projection site. Here we combine neuroanatomical tra...
متن کاملA dorsolateral spinothalamic pathway in cat.
A spinothalamic tract that courses in the dorsolateral funiculus of the spinal cord and originates almost exclusively from spinal lamina I neurons has been demonstrated in the cat by retrograde transport of horseradish peroxidase. This tract is of special interest because the course of this predominantly lamina I, contralateral projection lies outside the classical course of the spinothalamic t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 108 6 شماره
صفحات -
تاریخ انتشار 2012